The Arabidopsis mutant jason produces unreduced first division restitution male gametes through a parallel/fused spindle mechanism in meiosis II.

نویسندگان

  • Nico De Storme
  • Danny Geelen
چکیده

In plants, whole-genome doubling (polyploidization) is a widely occurring process largely contributing to plant evolution and diversification. The generation and fusion of diploid gametes is now considered the major route of plant polyploidization. The parallel arrangement or fusion of meiosis II MII spindles (ps) is one of the most frequently reported mechanisms generating triploid offspring. Through a forward genetics screen of an Arabidopsis (Arabidopsis thaliana) ethyl methanesulfonate population, we identified Arabidopsis thaliana Parallel Spindles1 (AtPS1), which was recently reported as a major gene implicated in the control of the ps meiotic defect. In addition, we describe the isolation and characterization of a novel allele of JASON, involved in male gametophytic ploidy regulation in plants. Similar to atps1 mutants, jason produces more than 25% 2n pollen grains and spontaneously forms triploid offspring. By combining both cytological and genetic approaches, we demonstrate that loss of JASON causes the formation of parallel arranged and fused spindles in male MII, resulting in the production of unreduced first division restitution 2n spores. Although JASON encodes a protein of unknown function, we additionally show that the meiotic ps defect in jason is caused by a reduction in AtPS1 transcript levels, indicating that JASON positively regulates AtPS1 expression, allowing the proper organization and orientation of metaphase II spindle plates in MII.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spindle Positioning, Meiotic Nonreduction, and Polyploidy in Plants

Polyploidy, the state of having more than two sets of chromosomes, is common in flowering plants (angiosperms), including the major crops [1]. Indeed, it is estimated that 30%–80% of the angiosperms are polyploids [2], and most diploid plant species, including Arabidopsis thaliana, show evidence of genome duplication in their ancestry [3]. Polyploidy is accompanied by genome-wide changes in gen...

متن کامل

Abnormal meiosis in an intersectional allotriploid of Populus L. and segregation of ploidy levels in 2x × 3x progeny

Triploid plants are usually highly aborted owing to unbalanced meiotic chromosome segregation, but limited viable gametes can participate in the transition to different ploidy levels. In this study, numerous meiotic abnormalities were found with high frequency in an intersectional allotriploid poplar (Populus alba × P. berolinensis 'Yinzhong'), including univalents, precocious chromosome migrat...

متن کامل

Meiotic progression in Arabidopsis is governed by complex regulatory interactions between SMG7, TDM1, and the meiosis I-specific cyclin TAM.

Meiosis is a modified cell division that produces four haploid nuclei from a single diploid cell in two rounds of chromosome segregation. Here, we analyze the role of Arabidopsis thaliana SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA7 (SMG7), THREE DIVISION MUTANT1 (TDM1), and TARDY ASYNCHRONOUS MEIOSIS (TAM) in meiotic progression. SMG7 is a conserved nonsense-mediated mRNA decay factor t...

متن کامل

The CYCLIN-A CYCA1;2/TAM Is Required for the Meiosis I to Meiosis II Transition and Cooperates with OSD1 for the Prophase to First Meiotic Division Transition

Meiosis halves the chromosome number because its two divisions follow a single round of DNA replication. This process involves two cell transitions, the transition from prophase to the first meiotic division (meiosis I) and the unique meiosis I to meiosis II transition. We show here that the A-type cyclin CYCA1;2/TAM plays a major role in both transitions in Arabidopsis. A series of tam mutants...

متن کامل

Mutations in AtPS1 (Arabidopsis thaliana Parallel Spindle 1) Lead to the Production of Diploid Pollen Grains

Polyploidy has had a considerable impact on the evolution of many eukaryotes, especially angiosperms. Indeed, most--if not all-angiosperms have experienced at least one round of polyploidy during the course of their evolution, and many important crop plants are current polyploids. The occurrence of 2n gametes (diplogametes) in diploid populations is widely recognised as the major source of poly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 155 3  شماره 

صفحات  -

تاریخ انتشار 2011